Python: 2 or 37

Bruce Beckles
University of Cambridge Computing Service

UUUUUUUUUUUU

| ¥ B - ol]

University of Cambridge
Computing Service

Outline of talk

Background:
— What's so special about Python 37

Python 2 or 37
Main differences between Python 2 or 3

Migrating from Python 2 to 3

VGO 2/24

Python 2

Initial (2.0) release in October 2000

First release incorporating some Python 3 features
(2.6) in October 2008:

— Incorporates some Python 3.0 features

Final major release (2.7) in July 2010
— Incorporates some Python 3.1 features

Most recent release (2.7.5) in May 2013

Python 2 is now in extended maintenance:

— Bugfix releases only
— Until May 2015 (see PEP 373)

vevo

3/24

Python 3

Initial (3.0) release in December 2008

First decent release (3.1) in June 2009

Most recent major release (3.3) in September 2012
Most recent release (3.3.2) in May 2013

Python 3 is the current version of Python:

— New features will only be added to Python 3, not
Python 2

UiGo 4/24

Python 3 evolution

Python 3.0: essentially an “extended beta” release
— Do not use
— 1/0O performance is rubbish

Python 3.1: First usable Python 3.x

Python 3.2: Improved version of Python 3.1
— No changes to syntax or core language (as compared to 3.1)
— More support for porting from Python 2.x

Python 3.3: Current major release of Python 3.x

— Even more support for porting from Python 2.x
Vo 5/24

What'’s so special about Python 3?

Backward compatibility

Python 2.7.x Python 3.x

X

Python 1.5 Python 3.0

UGCo 6/24

Ulo

3002 ‘PAE J12qwia22d

A flag day for
Python

Differences between
Python 2 and Python 3

ol

Ulo

Why Python 3 at all?

Python 2.x Python 3.x

Backward compatibility Not backwardly
means very few features compatible, so...
are ever removed (so the Little used or obsolete

core language gets features removed or

‘bloated’) demoted to modules

...and re-engineering is Re-engineered many of

more-or-less impossible... the internals and ways of
doing things

UGCo 9/24

Example: print

Python 2.x Python 3.x

printis a statement: a print() is a built-in
special reserved word that function: behaves like any
does something “magic” other function

(printing an object)

Cannot be modified or Can be modified or overloaded
overloaded

Syntax not flexible or easily Can easily extend it in the future
extensible with additional options

(keyword arguments) without
breaking backward
UCSs compatibility 10/24

Standard library

Python 2.x Python 3.x
Over time has Re-designed, streamlined
accumulated lots of and improved standard
“hacks”, obsolete library

functions/features, sub-
optimal ways of doings

o Similar/related modules
Some similar modules

rationalised
Many deprecated Many deprecated
modules still shipped modules removed

UGCo 11/24

Unicode

Python 2.x Python 3.x
Support provided by Built into core language:
Python module all strs are Unicode

strings (default encoding:
UTF-8)

In practice: Aaaaaaargh!

Mixing Unicode and ASCII

strings = AgONy!!! Separate type, bytes
(byte strings), if you really
need strings where each
character is stored as a
single byte

UGCo 12 /24

String Formatting

Python 2.x Python 3.x

Cprintf()-style string Built-in method of sStrings
formating via % operator using .NET framework-style

on STrings syntax
"%10s %5.2F" % "“"J0:10} {1:5.2F}".
(name, price) format(name, price)

C printf()-style string formating
via % operator still supported, but
discouraged

UGCo 13/24

Numeric types

Python 2.x

Two types of integers:
— C-based integers (1nt)

— Python long integer
(fong)

“True” integer division, e.g.
5/2=2

Up to Python 2.6.x: Floats
often displayed to a
surprising number of
decimal paces, e.g

1.0 / 10 = 0.1000000000000001

vevo

Python 3.x

All integers are Python long
integers so only one integer
type (INt)

Integer division can change

type, e.g.
5/2=25

From Python 3.1: Floats
usually displayed to smaller
number of decimal places,
e.g.
1.0/10=0.1
14 /24

Iterators and Sequences

“Treat it like a list and it will behave like an
iterator”

for key 1In dictionary:
print dictionary[key]

Python 2.x Python 3.x

next() built-in function next() built-in function
— backported to Python 2.6
Rationalised built-in sequence

Several similar sequence types types

Many more specialist
container types and subclasses

15/24

Fewer specialist container

types
v

Example: range

Python 2.x Python 3.x

range() producesa list range() now produces an
of numbers range object: doesn’t
produce an explicit list of
numbers, instead knows
what the current number is
and can give the next one

xrange() produces an
Xrange object: doesn’t
produce an explicit list of
numbers, instead knows
what the current numberis Get an explicit list of
and can give the next one numbers with

list(range())

UGCo 16 /24

Exception Handling

Python 2.x

No proper exception
hierarchy

Each type of exception can
be different

— No standard behaviour

— ...or information provided
by exception

vevo

Python 3.x

All exceptions are derived from
BaseException

— String exceptions are finally
dead!

Exceptions cannot be treated as
sequences

— Use args attribute instead

Exception chaining

Cleaned up APIs for raising and
catching exceptions

17 /24

Metaprogramming

Python 2.x Python 3.x
Supports function Adds support for function
decorators annotation

— Function wrappers — Extends power of

function decorators

Metaclasses can now
process a class before any
part of the class is
processed and
incrementally as methods

are defined
Ve 18 /24

Supports metaclasses (but
they can only process a
class after the entire class
has been executed)

Python 2 or 3?

Use Python 2.7.x for
projects using:

Significant amounts of
pre-existing Python 2.x
code that can’t easily be
ported to Python 3.x

Python 2.x modules with
no Python 3.x equivalent

Jvo

Use Python 3 (3.1 or
higher) for:

Everything else!
In particular:

Brand new projects
Code making significant
use of Unicode

Code intended to be used
after 2016/2017

19/24

Migrating from 2.x to 3.x

Make sure code runs under Python 2.7.x

Run Python 2.7.x with the “=3” command-line switch:
— Fix warnings

Use the Python-provided 2t03 tool to automatically
port to Python 3.x:

— Test under Python 3.x and manually fix any remaining
issues

Re-write exception handlers and any code that
explicitly deals with Unicode

- s 20/ 24

References (1)

Should | use Python 2 or Python 3 for my
development activity?:
http://wiki.python.org/moin/Python2orPython3

— Includes good set of links on differences between
Python 2 and Python 3, and on porting to Python 3

What’s New In Python 3.0:
http://docs.python.org/3/whatsnew/3.0.html

Uiy 21/24

http://wiki.python.org/moin/Python2orPython3
http://docs.python.org/3/whatsnew/3.0.html

References (2)

Python 3: the good, the bad, and the ugly (David

Beazley)
http://www.ukuug.org/newsletter/18.3/#pytho david

— Note that some of the criticisms of Python 3(.0) in this
article do not apply to later versions of Python 3.x
(most notably the I/O performance has been fixed in
Python 3.1 and later)

Let’s talk about Python 3.0 (James Bennett)
http://www.b-list.org/weblog/2008/dec/05/python-3000/

Uiy 22 /24

http://www.ukuug.org/newsletter/18.3/
http://www.b-list.org/weblog/2008/dec/05/python-3000/

Porting tools

Porting from Python 2.x to Python 3.x: 2103
http://docs.python.org/3/library/2to3.html

— Use version that ships with release of Python 3.x to
which you are porting

Porting from Python 3.x to Python 2.7: 3to2
nttp://wiki.python.org/moin/3to2

http://pypi.python.org/pypi/3to2
http://bitbucket.org/amentajo/lib3to?2
nttp://code.google.com/p/backport/

UCS 23 /24

http://docs.python.org/3/library/2to3.html
http://wiki.python.org/moin/3to2
http://pypi.python.org/pypi/3to2
http://bitbucket.org/amentajo/lib3to2
http://code.google.com/p/backport/

Questions?

	Python: 2 or 3?
	Outline of talk
	Python 2
	Python 3
	Python 3 evolution
	What’s so special about Python 3?
	Python 3: 	 A flag day for Python
	Differences between Python 2 and Python 3
	Why Python 3 at all?
	Example: print
	Standard library
	Unicode
	String Formatting
	Numeric types
	Iterators and Sequences
	Example: range
	Exception Handling
	Metaprogramming
	Python 2 or 3?
	Migrating from 2.x to 3.x
	References (1)
	References (2)
	Porting tools
	Questions?

