
Python: 2 or 3?

Bruce Beckles
University of Cambridge Computing Service

2 / 24

Outline of talk
Background:

– What’s so special about Python 3?

Python 2 or 3?

Main differences between Python 2 or 3

Migrating from Python 2 to 3

3 / 24

Python 2
Initial (2.0) release in October 2000
First release incorporating some Python 3 features

(2.6) in October 2008:
– Incorporates some Python 3.0 features

Final major release (2.7) in July 2010
– Incorporates some Python 3.1 features

Most recent release (2.7.5) in May 2013

Python 2 is now in extended maintenance:

– Bugfix releases only
– Until May 2015 (see PEP 373)

4 / 24

Python 3
Initial (3.0) release in December 2008
First decent release (3.1) in June 2009
Most recent major release (3.3) in September 2012
Most recent release (3.3.2) in May 2013

Python 3 is the current version of Python:

– New features will only be added to Python 3, not
Python 2

5 / 24

Python 3 evolution
Python 3.0: essentially an “extended beta” release

– Do not use
– I/O performance is rubbish

Python 3.1: First usable Python 3.x

Python 3.2: Improved version of Python 3.1

– No changes to syntax or core language (as compared to 3.1)
– More support for porting from Python 2.x

Python 3.3: Current major release of Python 3.x

– Even more support for porting from Python 2.x

6 / 24

What’s so special about Python 3?

Python 2.7.x

Python 1.5

Python 3.x

Python 3.0

Backward compatibility

7 / 24

Python 3:
A flag day for
Python

8 / 24

Differences between
Python 2 and Python 3

9 / 24

Why Python 3 at all?
Python 2.x

Backward compatibility
means very few features
are ever removed (so the
core language gets
‘bloated’)

…and re-engineering is
more-or-less impossible…

Python 3.x

Not backwardly
compatible, so…
Little used or obsolete
features removed or
demoted to modules

Re-engineered many of
the internals and ways of
doing things

10 / 24

Example: print
Python 2.x

print is a statement: a
special reserved word that
does something “magic”
(printing an object)

Cannot be modified or
overloaded
Syntax not flexible or easily
extensible

Python 3.x

print() is a built-in
function: behaves like any
other function

Can be modified or overloaded

Can easily extend it in the future
with additional options
(keyword arguments) without
breaking backward
compatibility

11 / 24

Standard library
Python 2.x

Over time has
accumulated lots of
“hacks”, obsolete
functions/features, sub-
optimal ways of doings

Some similar modules

Many deprecated
modules still shipped

Python 3.x

Re-designed, streamlined
and improved standard
library

Similar/related modules
rationalised

Many deprecated
modules removed

12 / 24

Unicode
Python 2.x

Support provided by
Python module

In practice: Aaaaaaargh!
Mixing Unicode and ASCII
strings = AgONy!!!

Python 3.x

Built into core language:
all strs are Unicode
strings (default encoding:
UTF-8)

Separate type, bytes
(byte strings), if you really
need strings where each
character is stored as a
single byte

13 / 24

String Formatting
Python 2.x

C printf()-style string
formating via % operator
on strings

"%10s %5.2f" %
(name, price)

Python 3.x

Built-in method of strings
using .NET framework-style
syntax

"{0:10} {1:5.2f}".
format(name, price)

C printf()-style string formating
via % operator still supported, but
discouraged

14 / 24

Numeric types
Python 2.x

Two types of integers:

– C-based integers (int)
– Python long integer

(long)

“True” integer division, e.g.

5 / 2 = 2

Up to Python 2.6.x: Floats
often displayed to a
surprising number of
decimal paces, e.g

1.0 / 10 = 0.1000000000000001

Python 3.x

All integers are Python long
integers so only one integer
type (int)

Integer division can change
type, e.g.

5 / 2 = 2.5

From Python 3.1: Floats
usually displayed to smaller
number of decimal places,
e.g.

1.0 / 10 = 0.1

15 / 24

Iterators and Sequences

Python 2.x

next() built-in function
– backported to Python 2.6

Several similar sequence types

Fewer specialist container
types

Python 3.x

next() built-in function

Rationalised built-in sequence
types

Many more specialist
container types and subclasses

“Treat it like a list and it will behave like an
iterator”

 for key in dictionary:
 print dictionary[key]

16 / 24

Example: range
Python 2.x

range() produces a list
of numbers

xrange() produces an
xrange object: doesn’t
produce an explicit list of
numbers, instead knows
what the current number is
and can give the next one

Python 3.x

range() now produces an
range object: doesn’t
produce an explicit list of
numbers, instead knows
what the current number is
and can give the next one

Get an explicit list of
numbers with
list(range())

17 / 24

Exception Handling
Python 2.x

No proper exception
hierarchy

Each type of exception can
be different

– No standard behaviour
– …or information provided

by exception

Python 3.x

All exceptions are derived from
BaseException

– String exceptions are finally
dead!

Exceptions cannot be treated as
sequences

– Use args attribute instead

Exception chaining

Cleaned up APIs for raising and
catching exceptions

18 / 24

Metaprogramming
Python 2.x

Supports function
decorators

– Function wrappers

Supports metaclasses (but
they can only process a
class after the entire class
has been executed)

Python 3.x

Adds support for function
annotation

– Extends power of
function decorators

Metaclasses can now
process a class before any
part of the class is
processed and
incrementally as methods
are defined

19 / 24

Python 2 or 3?
Use Python 2.7.x for
projects using:

Significant amounts of
pre-existing Python 2.x
code that can’t easily be
ported to Python 3.x

Python 2.x modules with
no Python 3.x equivalent

Use Python 3 (3.1 or
higher) for:

Everything else!
In particular:

Brand new projects
Code making significant
use of Unicode
Code intended to be used
after 2016/2017

20 / 24

Migrating from 2.x to 3.x
Make sure code runs under Python 2.7.x

Run Python 2.7.x with the “-3” command-line switch:
– Fix warnings

Use the Python-provided 2to3 tool to automatically
port to Python 3.x:
– Test under Python 3.x and manually fix any remaining

issues

Re-write exception handlers and any code that
explicitly deals with Unicode

21 / 24

References (1)
Should I use Python 2 or Python 3 for my

development activity?:
http://wiki.python.org/moin/Python2orPython3
– Includes good set of links on differences between

Python 2 and Python 3, and on porting to Python 3

What’s New In Python 3.0:

http://docs.python.org/3/whatsnew/3.0.html

http://wiki.python.org/moin/Python2orPython3
http://docs.python.org/3/whatsnew/3.0.html

22 / 24

References (2)
Python 3: the good, the bad, and the ugly (David

Beazley)
http://www.ukuug.org/newsletter/18.3/#pytho_david
– Note that some of the criticisms of Python 3(.0) in this

article do not apply to later versions of Python 3.x
(most notably the I/O performance has been fixed in
Python 3.1 and later)

Let’s talk about Python 3.0 (James Bennett)
http://www.b-list.org/weblog/2008/dec/05/python-3000/

http://www.ukuug.org/newsletter/18.3/
http://www.b-list.org/weblog/2008/dec/05/python-3000/

23 / 24

Porting tools
Porting from Python 2.x to Python 3.x: 2to3

http://docs.python.org/3/library/2to3.html
– Use version that ships with release of Python 3.x to

which you are porting

Porting from Python 3.x to Python 2.7: 3to2

http://wiki.python.org/moin/3to2
http://pypi.python.org/pypi/3to2
http://bitbucket.org/amentajo/lib3to2
http://code.google.com/p/backport/

http://docs.python.org/3/library/2to3.html
http://wiki.python.org/moin/3to2
http://pypi.python.org/pypi/3to2
http://bitbucket.org/amentajo/lib3to2
http://code.google.com/p/backport/

24 / 24

Questions?

	Python: 2 or 3?
	Outline of talk
	Python 2
	Python 3
	Python 3 evolution
	What’s so special about Python 3?
	Python 3: 	 A flag day for Python
	Differences between Python 2 and Python 3
	Why Python 3 at all?
	Example: print
	Standard library
	Unicode
	String Formatting
	Numeric types
	Iterators and Sequences
	Example: range
	Exception Handling
	Metaprogramming
	Python 2 or 3?
	Migrating from 2.x to 3.x
	References (1)
	References (2)
	Porting tools
	Questions?

