The Core User Directory

A Pilot Project in Identity Management for the collegiate University

ICT Forum Conference July 2009

Lou Burnard, OUCS Rob Hebron, independent consultant

Agenda

- Background drivers
- Overview of the CUD as delivered
 - Demonstration
 - Evaluators' experience
 - What makes it tick
- Where do we go from here
- Q&A

Background

- Personal Data is stored in hundreds of different places
 - University
 - College
 - Department/Division/Faculty
- Some data attributes are duplicated across different stores (sometimes inconsistently); some are unique to particular stores
- There is no way of reliably combining data about the same person held in different stores

Problems...

- People have multiple, changing, affiliations
- Data is often (re)created when an affiliation changes or is created
- Different parts of the collegiate university maintain their own lists of "authorised" users
- The Government requires counts of people, not their roles or affiliations
- Authorisation however may derive from a role
- And not all sources of information are equally authoritative...

Two specific examples

- To make its HESA return, the University needs to know how many students and staff it has.
 - But some students are also staff members, so they shouldn't count twice
- To pay graduate students operating the Graduate Supervision System, we would need to know the University Payroll identifier for their account (if they have one)
 - But there is no simple way of looking it up

The CUD Pilot Project

"Establish a University-wide Identity Management system which provides authentication and authorisation, and enables interoperability with national and international infrastructure." [ICT Strategic Plan, as endorsed by Council GPC, and PRAC last year]]

- What would an Identity Management system need?
 - A unique identifier for individuals associated with the University
 - A minimum set of attributes associated with that key
 - Links between the resulting database and other existing data sources within the University

CUD Goals

- CUD should provide three services:
 - Data matching service to link data linked to a person across multiple data stores
 - Data provision service to provide a "useful subset" of all data know about a person directly from the CUD
 - Foreign key service to enable unique keys in different data stores to be obtained and then used to obtain additional data directly from those systems
- CUD is person focussed. A person's identity is represented in the CUD by a single person record, and all data in other systems is linked to this representation

"Identity" Management

"The quality or condition of being the same in substance, composition, nature, properties, or in particular qualities under consideration; absolute or essential" - OED

"sameness of essential or generic character in different instance" -Webster

- A person only has one identity
- An identity may be represented in different data stores, but data contained in a data store does not constitute an identity
- Identity Management comprises the matching, linking and manipulation of data which represents people in data stores
- Functions such as account provisioning are ancillary and enabled by Identity Management

CUD Pilot Database

To be included in the CUD, a data attribute:

- Should be required by two or more data consumers...
- ... or should be required by a central data service
- ... or should be provided by two or more data providers

To be included in the CUD, a data source

- should have a persistent person-based key
- must contain sufficient data to identify people

CUD Pilot Functionality

- Provides interfaces to import data, either as batch or deltas
- Matches the data against data already in the CUD
- Consolidates a subset of data available into a central data store
- Provides interfaces to query data
- Provides interfaces to export data, either as batch or deltas
- ... thus providing a central data reconciliation service

Initial User Community

- For the Pilot, we consolidated data from eight data sources
 - Card
 - OSS
 - OUCS
 - Staff Records
 - New College
 - DPAG
 - Earth Sciences
 - Telecomms

 We defined and evaluated a number of use cases for these

CUD Pilot

Demonstration of web interface to CUD running locally

Under the hood

- The software components of CUD are all open source
 - Mule ESB to provide the incoming and outgoing interfaces for data transfer
 - Drools (JBoss Rules) for rule-based data manipulation and transformation
 - Postgres for data storage
 - Data Rules and Routing Engine to manage data matching and data flows
 - Spring Framework to manage configuration, object lifecycle etc.

Under the hood – the DRRE

- The DRRE manages data flows:
 - Data is received on an interface and stored in a dynamically build class
 - Rule based data transformations made
 - Data matching
 - Rule based data transformations made
 - Data written to CUD database

Under the hood – interfaces

- Mule ESB is a well established project which provides full Enterprise Service Bus functionality
- CUD only uses it to provide incoming and outgoing data interfaces which use well defined protocols
 - File
 - SOAP
 - SMTP
 - POP3...
- Branching and conditional logic which is available in Mule is unused
- CUD does not have an inherent dependency on Mule something like Apache ServiceMix could be used instead

Under the hood – rules

- Drools used to apply business rules which correspond to a condition → action format
- Drools uses the RETE algorithm to assess rules in parallel and deal with multiple rule matches, and is very fast (much faster than a traditional if {...} else if {...} else if {...} method of applying rules)
- Conditions always assess data passing through the CUD, actions always transform that data with add, modify and delete actions
- Helper classes enable dynamic lookups etc. to be done in a Drools ruleset

Under the hood – data matching

- Data matching is predicated on data existing in both the matching database and the data store that can be used to uniquely identify a person
- If a unique match cannot be made, but multiple possible matches exist then the matches can be stored for manual checking
- Multiple matching strategies can exist for a data sources, arranged in order of confidence:
 - DOB, Surname, First name high confidence
 - DOB, Surname match low confidence
 - Surname matches very low confidence

Under the hood – data matching

- Matching strategies work by string comparison of attributes and are converted into SQL queries:
 - Exact matches
 - Case insensitive matches
 - Fuzzy matches (Lievenstien, Soundex, Metaphone, TRGM)
- Dates must be in common format to be matched (dd-MMM-yyyy)

Under the hood – the database

- The schema of the CUD database is designed to be very flexible for an ever changing range of data sources
 - Matching database
 - treats all attributes the same
 - stores them as strings to ease matching
 - CUD database
 - makes simple distinction between person attributes, unit attributes and units
 - stores attributes as strings with data type recorded

Results of the Pilot

- Technical issues of providing required functionality have been addressed
- What have we learned from the use cases?
 - In a production CUD data stores are likely to be both providers of data to the CUD and consumers of data from it
 - There are major issues relating to governance and policy

Policy issues to be decided

- Which data sources should be the CUD's primary data providers?
- Which data attributes should be included in the CUD?
- Data protection and privacy issues?
- Who decides and on what basis?

Which data?

- The Big Five data sources
 - Card, OSS, Payroll, Telecomms, OUCS
- Unit-role affiliations
- A given data attribute may be
 - Known to exist in a data source
 - Linkable from the CUD but maintained elsewhere
 - Copied into the CUD
- Pragmatic criteria need to be defined

Criteria

- Is this data attribute useful to more than one data consumer?
- Does access to this data contribute to the university's business?
- Is this data reliably available from an authoritative source, possibly on the basis of other data already present in the CUD?

Next steps

- Over the next year, the CUD might facilitate...
 - a unified email/phone directory service
 - Iinkage of student records and card image data
 - a data linking service
- We need to set up
 - High level authority to determine policies
 - Technical support for the CUD
 - Database administration function

Comments?