
1

I’m Jeremy Rowntree, the IT Systems Manager for the Department of Biochemistry. I’ve
worked there since 1993, following on from undergrad and graduate study there since 1983.
Yes, that’s right, I used to be a biochemist.

<Click> I am here because Ashley Woltering reckoned that the work I did on Request Tracker
(commonly referred to as RT) was worth presenting.

<Click> I should also say that I will touch only briefly on how to set up a generic RT
installation. There is plenty of documentation on this, written far better than I could manage
as our copy of RT was set up by my colleague John Elder. I’ve done precisely one test install …
which was for this talk.

One final disclaimer. We don’t actually use RT for our IT ticket system … yet. That’s in the
pipeline for later on this year.

<Click> So, why, you may ask, did I come to be setting up RT in the first place?

Well, some of you may know that the Biochemistry Department moved into a shiny new
building last October. As with all new buildings, there were a few teething problems. Actually,
they’d reached about 200 when they realised that their paper-based logging system,
manually re-typed into Excel every few days wasn’t really up to the job.

<Click> So the call came in – can we have a web-based fault log system, please?
<Click> One that’s really easy for both the users and the building managers to use?
<Click> And we need everyone to be able to see what’s already been logged, to reduce
repeat entries

2

Clearly a job for a ticket management system. We still use Req for our IT queue, but
only because I hadn’t got round to switching to everyone’s favourite, RT.

<Click> Catch is, most RT installations use free text email as the primary route in for
requesters. We wanted to capture specific details about the location of each fault, to
be able to sort by location, and so on.

I wasn’t keen on making the RT interface available directly to all users. That would
have meant Webauth-enabling RT and training everyone how to use it.

They were already used to using our web form front-end to Req, which generates the
request email from the form input, so I decided to go for the same technique.

<Click> As for letting all users see open tickets, I reckoned it ought to be possible
either to export the data from RT, or maybe get at directly from the database.

<Click> I also had a few ideas about how I might import the Excel data. The tricky bit,
though, was going to be maintaining the individual field values.

3

I’ll basically be describing about a month’s work, on and off, covering

<Click> Adding custom fields to a standard RT installation
<Click> The technique needed to extract the custom field values from the request
email
<Click> How we created the front-end request interface
<Click> How we pulled that 200 record Excel sheet into RT, complete with all the
custom fields
<Click> How we enabled users to see all Open tickets without having to log into
anything and finally
<Click> The technique we chose to extract detailed ticket reports for fault
management meetings

4

A short digression here. In order to prepare some of the screenshots for this talk, I
needed a spare RT system to work on. I couldn’t really use the production one, and I
didn’t want to trouble John with another setup. The production system was done
using Debian packages, so I figured I’d do the same. Bear in mind that I maintain
Windows servers, not Linux ones, so my stumbles would probably be hurdled easily
by seasoned Linux sysadmins.

Essentially, I followed the instructions at these two links.

However, I found that the route I followed didn’t populate the database with the
initial values, so my first login attempt failed because there was no root user.

<Click> The solution was to run the setup database command manually.

I also found I couldn’t get mails into RT. The error code was a 403 - permission
denied.

<Click> Turned out that my VMPlayer Debian box was on an IP which wasn’t in the IP
restricted access list for bypassing the authentication layer. Adding the IP to this file
did the trick.

That got me a working basic RT installation. Time to start customising it.

5

I got this tip from Ashley, who I believe got it from the rather excellent O’Reilly book,
RT Essentials.

It may seem like a lot of extra work, but you’ll be glad you did it when you find you
need to run an import into your twentieth RT queue without sending an email to
everyone, but you can’t just turn off the Autoreply scrip because it’s defined globally,
and would affect all your queues. Or you’re asked to tweak the template text for just
the Web request queue. You get the idea.

<Click> Fortunately, the basic Scrip display screen contains all the information you
need to recreate the 10 default scrips, so save a screenshot in a safe place before you
delete the global definitions, then refer to it whenever you create a new queue.

Oh, in case you were wondering, a scrip is just RT’s name for a script.

6

Because I’m feeling kind, here’s a copy of that default list.

While you’re busy writing them down, (only joking) I’ll move on to the hunt for
custom field management.

This was one of those Google moments. The type where you pick exactly the right
search term first time round.

Suffice to say I knew that it was possible to add custom fields to RT. It’s right there on
the screen, before Global.

What I needed was a way to extract the custom field values from the request email.
Fortunately, that was exactly what the author of the ExtractCustomFieldValues
module decided to call his new creation.

7

The installation is reasonably straightforward. It starts, of course, with a download

<Click> Then an extract, followed in this case by a Perl command to create the Make
file. Debian puts RT.pm somewhere the script wasn’t expecting, so I had to feed it the
location by hand. Then comes the inevitable Make Install, then some database
tweaks. Again Debian confused the script. Nothing a quick symlink couldn’t solve
though.

8

Custom fields in RT are very easy to create, and can be constrained to a fixed list of
values, or simply declared to be mandatory.

Take care when you’re choosing field names if you expect to have multiple RT queues
as the fields are defined globally. So you can’t have two different fixed value lists for
the same field name in two different queues.

You can reuse common custom fields across queues though.

You can also have spaces in Custom Field names, which helps to make them readable

<Click> As you can see, there is a wide range of field types, including file and image
uploads. So far, I’ve only needed “Enter one value” and “Select one value”.

9

Once you’ve saved the basic custom field definition, you need to assign it to at least
one queue. Just tick the required queues and Submit.

10

You also need to assign see and modify permissions for your new custom field. You
can either use the built in System groups, or define your own.

Creating User defined groups is covered in the standard RT documentation.

11

The end result of the work so far is that the “Create a New Ticket” interface within RT
has gained an extra entry, along with a bit of help text.

However, this only affects this internal interface, which might be used by help centre
staff who transcribe incoming requests over the phone.

We still need to enable RT to automatically extract field values from incoming emails

12

To do this we need to create an import filter.

The ExtractCustomFieldValues module uses RT’s template system to store the filter
definition. As you can see from the name, you would usually create a separate
template for each queue.

Templates are more commonly used to hold the boilerplate text for email auto-
replies and so on, but since the filter definition is plain text, this technique works fine.

13

The syntax provides a way of matching the name of the custom field within RT to a pattern
within the email.

First you give the custom field name as held within RT. As you can see, spaces don’t need to
be quoted.

The default separator is the pipe character, but this can be redefined within the template
text if necessary

<Click> Next you specify where to find the value, either within the body of the email, or by
giving the name of a header.

This lets you extract common email header information, such as User-Agent or just the
Subject. As we’ll see later, it can also be used to hide additional values within the incoming
email.

<Click> Then comes the crucial bit, a regular expression to match the required value within
the email. For headers .* will usually suffice, but for body text you’ll need to design a unique
pattern. The recommended approach is the one seen here, the name of the field, in this case
with an underscore, followed by a pattern to match to the end of the line.

<Click> Finally, there’s an Options field, in this case just a q for Quiet. This prevents RT from
logging the import of the field value as a transaction in its own right. The documentation
mentions other possible values that I’ve not had need of.

You’ll need to create one line in the template for each custom field. When all is done, just
save the template. You can update it at any time.

The full import filter we used for our faultlog can be found at
https://wiki.oucs.ox.ac.uk/itss/CustomisingRequestTracker

14

Finally, we need to tell RT which filter template to apply to incoming tickets.

To do this we create a new scrip for the queue. The condition is, of course, “On
Create”.

The Action drop-down contains the only visible evidence that the
ExtractCustomFieldValues module has been installed, the imaginatively named
extract custom field values action.

The template is, as you might expect, the one we just created.

And finally Stage is set to TransactionCreate, in common with all the default scrips.

Click Create and we’re ready to test our new custom field import filter.

15

I used mailx to generate the test emails, largely because it makes short work of
sending the same, or similar emails over and over again.

As you can see, aside from the subject, I’ve just included a single line of text which
matches the regular expression we defined earlier.

<Click> The result is a new ticket, complete with the room number from the email
stored in its own custom field.

16

Clearly, we can’t expect requesters to format their request email precisely according
to the regular expressions of the import template.

The frequency of bounces from our current manual entry Web interface to Req
confirms that many of them can’t even spell their email addresses correctly.

So, we’ll need a web form to guide the input process, and a script to format the value
appropriately and generate an email for dispatch into the RT queue.

<Click> Having worked recently with OAK LDAP for another project, it struck me that
this could provide an effective means of ensuring we capture the correct name and
email address, at the same time as restricting access to the submission form to valid
members of the department.

The rest of the form just needs to request the same fields as we’ve defined within RT.

17

Setting up a Webauth enabled web server has been covered in other talks and is
thoroughly documented already, as is the process of connecting your server to the
OAK LDAP service.

There are a few choices to be made during the configuration, so I’ll briefly run
through them now.

The next few slides are mostly for the benefit of on-line readers, so don’t worry if you
don’t follow all the details now.

18

The basic webauth conf is standard to all installations, so I’ll move straight on to …

<Click>

19

… the configuration of the webauthldap module.

There are two options for the webauth LDAP filter as documented at this link.

We want “Restricting access based on affiliation with a University unit”. The
alternative is “Restricting access to members of a given unit with a given status”

Note that we don’t define which unit we’re interested in at this stage.

20

That comes in the Location definition for the RT input form itself.

Require privgroup takes as a parameter the Distinguished Name of the unit we wish
to enable access for

Then we simply list the two OAK LDAP attributes that we wish to retrieve for the
newly logged on user.

The values are placed into server variables as we’ll see in the next slide.

21

Here is a small extract from the form definition, written in PHP.

Bear in mind that I’m only displaying a couple of variables. The OAK LDAP language
docs cover direct interaction with the LDAP service. The simplicity of using
WebAuthLdapAttribute in the Apache config is that no further code is needed. I’ll
leave the creation of the rest of the form as an exercise for the reader. Or maybe I’ll
put it on the Wiki. Either way, there isn’t space for it here.

Do note that you’ll need to duplicate any Custom Field constraints that you’ve
configured within RT. There’s no point having provided a fixed value list for, say,
“Operating System”, if all the web form offers the user is a free text field.

You’ll notice the form action script is a reference to an rtmailer.pl

The full form can be found at
https://wiki.oucs.ox.ac.uk/itss/CustomisingRequestTracker as “input.php”

<Click>

22

Which is nothing more than a copy of NMS Formmail, a well secured Perl script
designed to pass on values from a web form to an email.

I’ve not included the full config, only the values that I’ve changed from the defaults or
are otherwise worth noting.

The key point of the design is that the target email address is buried in the script
itself, and referred to via an alias. You can define several aliases if you wish, each
pointing to a different email address, and perhaps, therefore, a different RT queue.

Note that we don’t send a confirmation email as RT itself takes care of that when it
receives the ticket request email.

The full script can be found at
https://wiki.oucs.ox.ac.uk/itss/CustomisingRequestTracker as faultlog.pl

23

Formmail is partially controlled from the web form via hidden variables.

You can see that we’ve used the general alias from the previous slide as a recipient.

We’ve also defined a return URL to be displayed after the form is submitted

Formmail allows some basic validation and will request a re-submission of the form if
any of these required fields is missing.

Finally, we have the ability to define in which order the body text fields will appear.
This will be important later on.

24

No, I’m not entering this for any design awards.

Still, you can see how OAK LDAP has supplied my name and email address, and two
examples of fixed value restrictions, a radio button and a drop-down list.

Failure to fill in any of the Red fields will trigger the validation check from the
previous slide.

Provided everything is entered correctly, the result will be a correctly formatted email
being sent to RT, which will extract the custom field values and send an autoreply.

25

Building all this took a little while, during which time a further 168 jobs were entered
on paper. Many of these were still current, but had actions recorded against them
that would need to be displayed to the users.

We needed a script that could populate RT with these requests as if they’d been
submitted by the users themselves.

I had a brief look at adding the jobs to the database directly, but each ticket
generated far too many records created across a number of linked tables for this to
be seriously considered.

<Click> Best bet seemed to be to do the same as the Formmail script, simply generate
fake request emails, only using the Excel data as input.

<Click> By using the appropriate From address, we convince RT to correspond with
the original requester regarding future updates to their tickets.

I looked briefly at modifying the Formmail script itself, but it turned out to be heavily
targeted towards receiving web input, and not that easy to convert.

26

Instead I looked again at the email content, and recognised that it resembled LDIF
format – one value per line, field name first, then it’s value.

A while back I’d made use of a CSV to LDIF converter script while developing a link
between our Active Directory and our personnel database.

So I dug that script out, and modified it to work with the custom RT fields.

<Click> I then went hunting for a mail sender script. The one I found had the ability to
specify the From address separately for each mail. Perfect!

Linking the two scripts together was fairly straight forward.

You’ll recall I mentioned the Excel had an Action field. This wasn’t part of the request,
so I didn’t want it included in the email body. Same for the line number in the
spreadsheet, which was being used a Job ID value. I didn’t fancy trying to reset RT’s
job counter to zero for the import. RT’s design doesn’t include the ability to delete
jobs, only to hide them. Therefore I’d have had to remake the database, then reapply
much of the customisation.

<Click> Instead, I just used the Header import capability of the custom field extract
module. You may remember I mentioned that .* was enough to import a header.

The full import script can be found at
https://wiki.oucs.ox.ac.uk/itss/CustomisingRequestTracker as mailer.php, together
with a sample CSV file snippet

27

I chose to disable the autoreply scrip when importing resolved jobs. I then warned
users to expect email confirmations, then imported open jobs with the scrip turned
on. This gave them an email which they could respond to if they needed to chase up
the job.

28

As I mentioned earlier, RT is not well suited to providing information to non-logged in
users. It does have a spreadsheet export, but that would need to be run manually
then uploaded to the web. Furthermore the spreadsheet content is not customisable
so I’d have needed some macro processing to tidy it up for public output.

Instead I spent a little time decoding the raw database structure.

29

The LEFT JOIN with ObjectCustomFieldValues means that we return one row for each
Custom Field of each ticket. By selecting only those rows where
ObjectCustomFieldValues.CustomField=5, we limit the data returned to just the rows
containing the value of the Action custom field, which happens to have an ID of 5. We
limit Status to ‘Open’ so give the queue manager the chance to vet new ticket
content before it goes public. Otherwise, we’d select ‘Open’ or ‘New’.

The full status page script can be found at
https://wiki.oucs.ox.ac.uk/itss/CustomisingRequestTracker as status.php

30

I’ve blurred the details as I can’t imagine our Building Manager would want the whole
of ITSS to see precisely what was wrong with his lovely new building. The single open
ticket is genuine, though.

31

In addition to generating a public status display, I was asked to provide a reporting
facility to make it easy to supply progress reports to site management meetings. The
aforementioned spreadsheet export is perfect for this.

You simply run an appropriate search, then hit the “spreadsheet” link.

32

The end result even includes the custom field content.

Unfortunately, it doesn’t include the description as this is merely part of the email
body text and doesn’t make it into an exported field.

This is a problem as it contains much of the most useful information.

33

The solution is, of course, to capture the description as a custom field.

This is a rather more complex job as the description is typically a multi-line text block.

Fortunately “single line mode” allows the Regular Expression to match beyond the
end of line marker. You’ll need to add “Description: “ before the Description field in
the email.

You also need to make sure the description appears at the end of the message as the
multi-line matching regular expression will gobble up the rest of the email.

34

35

36

The questions mostly focussed on the ability of NMS FormMail to keep the
destination email address hidden from spammers.

Any further questions about this presentation can be emailed to
jeremy.rowntree@bioch.ox.ac.uk

37

